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Abstract

This study presents a novel workflow that was developed to model the internal heterogene-
ity of a complex 3D aquifer using the Multiple-point Statistics (MPS) algorithm DeeSse.
The modelled aquifer is the Continental Pliocene layer (PC) that is part of the Roussillon
Aquifer in the Perpignan’s region in Southern France.

This work is part of the Dem’Eaux Roussillon research project that aims to characterize
the whole groundwater dynamics of the Roussillon Aquifer in a context of growing pop-
ulation, climate change, and increasing pressure on the freshwater resources in a Mediter-
ranean environment. The specific purpose of the Master project is to model the 3D het-
erogeneity of the geology of the PC aquifer. The results of this work will then be used in
further steps to characterize the sustainability of groundwater flow extraction and in par-
ticular the risks of seawater intrusion in the plain that may affect the groundwater quality.

For this purpose, we use the direct sampling algorithm DeeSse and demonstrate its appli-
cability for the first time on a large study site. New procedures are proposed to account
for known geological constraints during simulations. The interpretation of gamma ray and
resistivity logs in terms of facies provided the hard data used to constrain the geostatistical
simulations along the boreholes. Then, to represent the complex sedimentation history of
the plain, a non-stationary training image (TI) is used. In order to control where each type
of geological environment may occur in the plain, novel procedures are proposed to gen-
erate auxiliary variables maps by solving numerically a flow problem enabling to obtain
plausible trends between the sources of the sediments and the outlet of the sedimentary
system. These trend and rotation maps are based on geological insights gathered from
outcrops and a general knowledge of processes occurring in these types of sedimentary
environments. Several sets of 100 simulations are produced and analyzed statistically. Fa-
cies probability maps and vertical proportion curves are analysed to test the plausibility of
the model. As compared to previous studies using MPS, this is the first time that such a
multivariate approach is employed at a regional scale.

Finally, we demonstrate that the hydraulic conductivity of the different sedimentary de-
posits cannot be represented by unique values if we assume that the geological models
that we have generated are acceptable. Based on transmissivity estimation, we conclude
that the hydrological characteristics of the deposits are heterogeneous over the PC aquifer.
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Résumé

Ce travail de Master présente les nouvelles méthodes développées pour modéliser
I’hétérogénéité interne d’un aquifere 3D complexe a 1’aide de I’algorithme Statistiques
Multi-points (MPS) DeeSse. L’aquifere modélisé est la couche Pliocene Continentale
(PC) qui fait partie de I’aquifere du Roussillon, dans la région de Perpignan dans le Sud
de la France.

Cette étude s’inscrit dans le projet de recherche Dem’Eaux Roussillon qui vise a carac-
tériser I’ensemble des processus hydrodynamiques souterrains de 1’aquifere du Roussil-
lon dans un contexte d’augmentation de la population, de changements climatiques et de
I’augmentation de la pression sur la ressource en eau dans un environnement méditer-
ranéen. Le but principal est de modéliser I’hétérogénéité géologique 3D de I’aquifer PC.
Les résultats de ce travail de recherche seront ensuite utilisés dans les prochaines étapes
de caractérisation de la ressource en eau souterraine expoitable et de la caractérisation du
risque d’intrusion d’eau salée dans la plaine, qui pourrait affecter la qualité de 1’eau.

C’est dans ce but que nous utilisons 1’algorithme d’échantillonnage direct DeeSse et dé-
montrons son applicabilité pour la premiere fois sur un grand site d’étude. De nouvelles
procédures sont proposées pour tenir compte des contraintres géologiques connues du-
rant les simulations. L’interprétation de diagraphies gamma-ray et résistivité en terme
de facies fournit les données conditionnantes utilisées pour contraindre les simualtions
géostatistiques le long des forages. Par la suite, afin de représenter 1’histoire complexe
de sédimentation dans la plaine, une image d’entrainement (TI) non-stationnaire est util-
isée. Pour controler la distribution spatiale des environnements de déposition, de nou-
velles procédures de création de variables secondaires basées sur la résolution numérique
d’équations d’écoulement sont ici proposées. Celles-ci permettent de prendre en compte
les sources d’apports de sédiments, les exutoires du systeme et ainsi de créer des cartes
de tendances de sédimentation réalistes. Les cartes de tendance et de rotation sont crées
a partir des informations provenant des affleurements et des campagnes de travaux de ter-
rain ainsi que des connaissances générales des processus li€s a ce type d’environnement
sédimentaire. Plusieurs sets de 100 simulations ont ainsi été réalisés et analysés statis-
tiquement. Des cartes de probabilités d’occurrence des facies ainsi que des courbes de
proportion verticale ont également été produites et analysées pour tester la robustesse du
modele. En comparaison avec les précedentes études utilisant les techniques MPS, c’est
ici la premiere fois qu’une telle approche multi-variables est utilisée a si grande échelle.
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Finalement, nous démontrons que la conductivité hydraulique des différents facies sédi-
mentaires ne peut €tre décrite par des valeurs uniques, si nous assumons que les modeles
générés sont acceptables. En se basant sur une estimation de la transmissivité, nous con-
cluons que les parametres hydrologiques des dépots sont hétérogenes pour 1’aquifere du
Pliocene Continental.

v
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1 Introduction

The aim of this project was to model the geological facies of the Continental Pliocene
(PC) aquifer of the Roussillon Plain. The aquifer is situated in the South-West of France
in the Perpignan region. The project was done in close collaboration with the French
Geological Survey (BRGM) and is part of the Dem’Eaux Roussillon project. The PC
layer is composed of alluvial deposits and presents a high level of heterogeneity. Those
types of deposits are generally hard to understand regarding their spatial distribution and
even harder to model due to their high heterogeneous nature. From its social and economic
importance, a clear understanding of the aquifer is essential to the authorities for a long
term and sustainable management of the regional water resources. The characterization
of the geology and the hydrogeological properties of the aquifer and its interactions that
occurred at the aquifer’s limits are necessary to understand the hydrodynamic system.

Geostatistical methods have been used in the last decades to model the heterogeneity of
the sub-surface. These methods are widely used in different fields going from risks assess-
ment, resources management, mining or in the petroleum industry for numerical reservoir
modelling [Matheron 1963, Strebelle et al. 2002, de Carvalho et al. 2017]. The geostatis-
tical approach offers different sets of tools, their aims are to infer variables of interest at
locations where they have not been measured. Those algorithms use hard data to constrain
their simulations. Hard data are information or measurements gathered on the study site,
these data are geo-referenced and are used to interpolate the missing parts of the simula-
tion.

One well-known and largely used geostatistical method is the kriging method [Matheron
1963]. This algorithm infers information by calculating the best linear unbiased estimator
between unknown points and hard data. Kriging estimation is fast, simple and produces
smooth interpolation. However the kriging interpolation tends to decrease the variability
of the data, cannot reproduce known geological object features (for example the sinuosity
of a channel) and thus is not always well adapted to estimate variables for geological
reservoirs. The kriging algorithm has its strengths and weaknesses and is one of many
ways to spatially interpolate data.

Multiple-point Statistics (MPS) is another geostatistical approach. While the solution of
kriging is unique by definition, MPS is a stochastic method that generates a set of equiprob-
able solutions [Renard et al. 2013]. Stochastic models consider the parameters as random
variables or distributions, whereas deterministic models consider these parameters to be
perfectly known and defined by a unique value. The outputs of stochastic simulations are
a set of equally likely solutions rather than one unique solution. As nature produces het-
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erogeneous systems and regarding the small amount of measurement generally available,
the stochastic approach is an efficient and powerful tool to simulate the sub-surface het-
erogeneity and especially to quantify the uncertainties of the model [Renard et al. 2013].
Moreover, MPS algorithms allow to integrate a conceptual knowledge of the variable of
interest into the simulation with the use of a training image (TI), which represents a con-
ceptual model of the variables aimed to be simulated.

Different MPS algorithms have been developed over the years: SNESIM [Strebelle et al.
2002], IMPALA [Straubhaar et al. 2011], FILTERSIM [Zhang et al. 2006] and Direct
Sampling [Mariethoz et al. 2010]. These algorithms use different approaches to store the
data, to sample the TI and can work with different variable types. We selected the Direct
Sampling algorithm, implemented in the softawre DeeSse, to perform this study. DeeSse
is a the Multiple-point Statistics (MPS) code [Straubhaar 2017], developed at the Center
of Hydrogeology and Geothermics of University of Neuchatel (CHYN). This code allows
to work with a multivariate approach and to use complex continuous rotation and affinity
maps as auxiliary variables.

In this Master project, the aim being to model the geological facies of the Continental
Pliocene (PC) aquifer of the Roussillon Plain, we propose to use the multivariate approach
provided by DeeSse to construct realistic geometric patterns constrained by 3D trend maps
and lithology logs analysis. This is the first time that this tool is applied for modelling
a large and complex aquifer. To reach that objective, it was necessary to develop new
procedures and a workflow to include most of the existing geological knowledge into the
stochastic method.

The overall procedure contains several steps. It was decided first to work with a 2D TI,
and to create the 3D model by stacking 2D simulations with a proper 3D evolution of the
trends. It appeared that the creation of a 3D TI would have been too complex to create
and to constrain. We decided to work in a 3D grid with a rather fine resolution along the
z axis (2m), which corresponded to the minimal vertical dimension of the facies found in
the plain. This allowed us to by-pass the creation of a 3D TI and to simulate in 2D with
object of a realistic z dimension.

We then created and tested several non stationnary 2D TI that displayed the main features
of the entire sedimentation process of the plain. In order to constrain the TI, we created
2D trends maps. We used a flow and transport simulation approach to simulate the hori-
zontal trend of the plain. By using a groundwater flow simulator, we were able to produce
complex horizontal trends corresponding to the sedimentation of the plain. This approach
was also applied to create the vertical trend (progradation of the plain towards the sea). By
simulating different representative 2D trend layers and combining them together through
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the vertical axis, we were finally able to create a complex 3D trend map, which accounted
for both vertical and lateral sedimentation trends that occur on the plain. This approach is
unique and has never been proposed for the creation of MPS auxiliary variables. More-
over, the use of the direct sampling algorithm allows us to work with complex rotation
maps, where the rotation value is continuous through all the nodes of the grid [Mariethoz
et al. 2010], whereas classic MPS techniques require to define rotation zones of unique
value [de Carvalho et al. 2017]. We created two continuous rotation maps that were used
as rotation bounds for the simulation.

The final model was finally tested by generating several sets of 100 simulations. From
them, we calculated probability maps, a Shannon Entropy map and vertical proportion
curves from the final model, to characterize its uncertainties. We also tested two methods
to estimate the hydraulic conductivity of the simulated facies from measured transmissivity
values. The multivariate approach, which combined a non-stationnary TI and a complex
3D trend map, has succeeded in the production of a large and realistic 3D aquifer. The
complex structure of the plain has been well reproduced through the simulations and the
realistic aspect of the facies has been honored. However, from post-simulation analysis it
appeared that some constraints applied on the simulation were too strong. A small variabil-
ity was observed within the post-simulated maps in the central part of the plain. Addition-
ally the characterization of the hydraulic parameters could not be determined with a simple
transmissivity inversion method. It is likely that those parameters are heterogeneous over
the plain and thus cannot be described by unique values.

This manuscript is structured as follows. Section 2 introduces some background infor-
mation regarding the project, the geology and hydrogeology of the Roussillon Aquifer,
followed by an introduction on geostatistics and the DeeSse algorithm. The understand-
ing of geological settings is essential to produce well defined inputs for the simulations.
Section 3 describes the overall workflow and all the implementation details: creation of
grids, borehole log interpretation, training image (TI) and auxiliary maps creation, as well
as the simulation parameters. Finally in section 4, we present and discuss the results of the
simulations and the post-simulations calculations.
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2 State of the art

In this section, I review some general information regarding firstly the geology and hy-
drogeology of the Roussillon Plain and secondly on the Multiple-point Statistics approach
and the DeeSse algorithm. In order to produce realistic simulations, we need to understand
what the sedimentary processes are before being able to create a suitable training image
for the simulations. The same principle stands for the algorithm, we need to understand
how it works and what are the main parameters controlling the simulation.

2.1 Description of the Roussillon Plain
2.1.1 Geology of the Plain

Located on the South-West part of France, between the Oriental Pyrenees Mountains and
the Mediterranean Sea, the Roussillon Aquifer is a multi-layers aquifer covering a 900km?
area. This aquifer is composed of different sandstone units which are separated by silt and
clay layers of low permeability [Duvail 2007]. This basin originates with the opening of
the Gulf of Lion (Oligocene to Miocene). Then, this basin has been largely eroded due
to the Messinian Salinity Crisis (MSC). It is with the drawback of the Mediterranean Sea
level that the Miocene layer has been exposed and eroded [Lofi et al. 2005]. During the
Pliocene, this basin has been filled up first with large fluvio-marine sedimentary prisms
(Sandy Marine Pliocene or PMS) and then with a continental river system (Continental
Pliocene or PC). On top of the stratigraphic pile, Quaternary deposits associated with river
and lagoon systems are found. They have cut through the PC deposits and formed the
actual landscape of the Plain. The marine structures are composed of large sandy bands,
which can be more than one km in extent and over 100m thick. Due to the subsidence of
the margin, the prisms are now tilted toward the sea. As presented on the figure 1, these
prisms also extend under the sea and form the main part of the Roussillon Basin.

Regarding the PC deposits, the main source of sediment came from the weathering of the
massifs that surround the Roussillon Plain. We find on the North the Corbiere massif com-
posed of limestone, on the West the Canigou massif composed of granite, gneiss and schist
rocks and on the South border the Albera massif composed of granitic and metamorphic
formations [Dutartre et al. 1995]. Near the relief, the association between high energy sys-
tems and the large amount of available sediments started by creating alluvial fan deposits.
The particle size of these deposits is large with a sandy matrix. The deposits are unsorted
sandstone conglomerates. These alluvial fans have a large extent of 1-3km radius and can
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be more than 10m thick. From field observations, there is a large amount of repetition
in the deposition that can yield to combined structures of 3-6km in radius and over 60m
in thickness. Following this, a network of braided river deposits take place. Sediments
that compose those systems are coarse sands and sandstone conglomerates. There is still
a large amount of energy in the system which results in unsorted clasts. These braided
structures have generally an extent of 100-150m width and are 1-5m thick. It appears from
field observations, that these networks can be well connected in their lateral extents. Near
their sources, these braided networks tend to be very dense and wide, while they gradually
narrow as they advance on the plain. With the decrease of the sedimentary slope, the struc-
tures tend to evolve to meander rivers [Nichols 2009]. These meander structures have the
same type of sediment that the braided river deposits, except that the sediments are better
sorted. The meander beds are wider than the braided beds. Their width can go up to 300m
and their thickness up to 10m.

The connectivity between the different structures is hard to observe either in the vertical
or in the horizontal directions. Three other sedimentary structures are also intrinsically
developed within the evolution of the alluvial plain. The two first ones are the floodplain
and the crevasse splay. A large rain event can result in a flood in the plain when the amount
of water and sediments exceeds the volume capacity of the river [Nichols 2009]. This can
also happen if the amount of energy becomes too important, which can lead to the breaking
of the river bank. Facies associated with these events, are the floodplain deposits, which
are mainly composed of very fine sediments. These deposits are generally a mix between
fine sand, clay and silt. Their thickness can be up to 5 m due to the stacking of multiple
flood events. The crevasse splay deposits happen when a river bank breaks or when the
flow energy is higher than the resistance of the bank. The structure of the crevasse splay
is fan-like, with a radius of 100-150m and is generally well sorted. The sediments that
compose crevasse splay are very fine with some sparse coarse sand in the matrix. Finally
the last structures observable are river levees. These structures are associated with meander
beds and are mostly made of sand and silt. These deposits are less visible on the outcrops
and thus are not well defined on the plain. At the top of the stratigraphic units, we find
Quaternary deposits. They are fluvial deposits in the proximal part of the relief and tend
to form lagoon deposits when approaching the sea.

This Master project focuses on the second layer, the Continental Pliocene (Figure 1 -
green and orange deposits). From the field observations, 6 facies are aimed to be modelled
— alluvial fan deposit, floodplain deposit, braided river deposit, meander river deposit,
crevasse splay deposit and levee deposit.
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Figure 1 — West-East cross section of the Roussillon Aquifer. The Miocene basement
is represented in purple and is covered by the Marine Pliocene prisms in dark and light
blue. The Continental Pliocene is represented in green and orange, respectively the flood-
plain and the undifferentiated river beds. The Quaternary sits on top of it but is very thin
compared to the rest of the deposits. [Duvail 2007]

2.1.2 Hydrogeology of the Plain

The Roussillon Aquifer is essential for the Perpignan region, since it is used for the agri-
culture, domestic use and controls the sea water intrusion of the Mediterranean Sea. The
exploitation of the groundwater resource is very important for this type of region that usu-
ally have a large population, a dry and hot climate, an important touristic influx and a
local economy based on agriculture. The main reservoirs of the aquifer are composed of
the Marine Pliocene with large sandy delta deposits, the Continental Pliocene with sandy
braided or meander river deposits and the Quaternary alluvial deposits. The connectivi-
ties between these reservoirs are not yet well defined just as the recharge processes of the
aquifer.
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More than 95% of the population needs in water are provided by the exploitation of the
aquifer. With an annual pluviometry of 570mm/yr and a consumption of 80 millions of
m? /yr, the resource vulnerability is important [CLE 2011]. The four main rivers of the
plain are (from North to South) — the Agly river, the Tét river, the Canterrane and the
Tech river, which take their sources in the nearest massifs that border the plain. Most
of the agriculture irrigation is performed through the exploitation of the rivers while the
rest 1s pumped from the aquifer through a network of more than 4500 private wells. Fur-
thermore, due to climate changes, aquifers water volume and their recharge sources could
decrease in the future. For a scenario where the average annual temperature increases of
1.5C°and is associated with a decrease in precipitation rate, the rivers flow could drop by
40% over the next 30 years [Chauveau et al. 2013]. The stress on the water resource would
automatically increase. Depending on their vertical connectivities, the Quaternary aquifer
could be largely impacted by these hydraulic and physical variations, whereas the Pliocene
aquifer could be less affected [Caballero and Ladouche 2015]. Finally the Pliocene extent
goes under the sea shore and protects the groundwater resource and the agricultural wells
from salted-water intrusion. It has been calculated that the sea level increases at a rate of
3mm/yr [Cazenave 2013]. Due to the low altimetry of the plain, a large number of zones
could become submerged. Moreover, during large storm events, salted-water intrusions
could occur near the shore and pollute extraction wells. The increase of the aquifer use
coupled with the increase of the sea level could promote sea-water intrusions and jeopar-
dize the water resource [Dorfliger and Perrin 2012].

The large extent of the Pliocene aquifer, both on the plain and under the sea shore, repre-
sent a large water reservoir. However, due to the uncertainties linked to the reservoir ge-
ometries, connectivities and recharge processes, the management of this resource appears
very difficult. The Dem’Eaux project aims to answer these hydrogeologic issues. All of
these questions need to be answered for a sustainable management and for the protection
of the resource.
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2.2 Geostatistics and Multiple-point Statistics

I now propose to introduce some basic knowledge on the Multiple-point Statistics and the
non-stationary nature of the data before presenting the algorithm used for the simulation,
DeeSse. I present the different parameters that control the algorithm and the input data
that are needed in order to create a simulation.

2.2.1 Multiple-point Statistics Definition

This master project aims to model the Continental Pliocene (PC) aquifer using the ad-
vanced Multiple-point Statistics algorithm DeeSse. Multiple-point Statistics (MPS) meth-
ods are advanced geostatistical tools used to infer information from prior data. The first
MPS algorithms have been developed in the 90’s with the ambition to improve the two-
points simulation used at that time. It has also been developed with the aim to provide
tools and methods that could constrain a simulation not only with a probabilistic approach
but also with a geological point of view. This has been made possible with the use of
training images (TI). TIs represent a conceptual idea of the structure that is aimed to be
simulated [Hu and Chugunova 2008]. Unlike some other geostatistic methods such as
semi-variogram, utilization of training image allows specialists from different fields to
discuss together about the geometry and the type of heterogeneity of a model. The DeeSse
algorithm can also deal with hard data, such as outcrops or borehole data and perform
multi-variables simulations [Mariethoz et al. 2010]. The use of TIs give flexibility and
creativity to the modeller.

Traditional geostatistics are based on the definition of a random function that should de-
scribe the distribution of the modelled object. However, defining such stochastic functions
can become difficult for complex natural systems. Multiple-point Statistics do not require
to define such function and will instead infer it in an implicit way from the training im-
age provided by the user [Hu and Chugunova 2008]. The TI is a conceptual view of the
geology or of the heterogeneity willing to be modelled. A TI does not have to honor spe-
cific data like borehole or outcrop measurements [Hu and Chugunova 2008], yet the TI
has to describe the geometric patterns specific to the object aiming to be modelled. A TI
can be either stationary or non-stationary. Stationary TIs are easier to use, they display a
large repetition of patterns with a homogeneous spatial distribution. The non-stationary
TIs generally include more information. These kinds of TIs need more pre-processing
treatment and are coupled with auxiliary variable in order to be used in an efficient way
by the algorithm (Figure 3). Even if the MPS appears to be powerful with the ability to
rely on both conceptual TIs and hard data, it still has to overcome some difficulties when it
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comes to reproduce natural objects. The geology of the subsoil is unlikely to be spatially
homogeneous, but instead displays trends and heterogeneities. Due to the large variety
of processes, it is usually unrealistic to represent the heterogeneity of the soil only with
stationary information.

2.2.2 Non-stationarity Simulation

The main difference between classic statistics and geostatistics is the assumption of spatial
dependency. This means that the location of data elements, plays an important role in the
analysis and the modelling process. From a statistical point of view, a stationary process is
defined by a constant mean, variance and autocorrelation structure over time or space. The
covariance between a pair of points depends only on the distance between those two points
and not on their location. This can be viewed from a more geological or geomorphological
point of view as a zone free of any trends. Unfortunately, almost all the objects of interest
in the hydrological or geological field (porosity, permeability, facies, and volumes) are
created by processes implying heterogeneity and spatial dependency. These processes
lead to the production of heterogeneous fields and non-stationary areas, layers or volumes.

An example of non-stationary field is represented by a fan delta (Figure 2). We can sum-
marize the geomorphology of a delta as a main and large meander river (Figure 2-1) that
splits into several smaller branches when approaching the sea (Figure 2-2 and 2-3). These
branches can evolve to different shapes either straight shape (Figure 2-3) or anastomosed
shape (Figure 2 -2). In this example, the rotation and scaling are non-stationary variables,
since they display spatial dependencies over the fan. If we use this image as our TI, the
non-stationarity that composes it would result in an unrealistic simulation. Without further
information, the simulation could not honor the dispersion of the channels in the delta fan,
neither the change of size.

When working with non-stationary T1, some rules have to be observed in order to produce
realistic simulation. Since the repetition of patterns is not homogeneous in the TI, auxil-
iary variables are required (Figure 3). The auxiliary variable is used by the code to filter
the sample location and thus, constrain the non-stationarity of the TI. With that informa-
tion, patterns are not mixed together when simulated. Auxiliary variables can come from
rotation maps, geophysical surveys or probability maps. It can be viewed as a continu-
ous field overlapping the TI. During the simulation this field is then used to control the
MPS algorithm. Consequently, only patterns associated with the auxiliary variables are
simulated in the corresponding part of the domain.
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An example of such simulation is presented on the figure 3. The TI represents a cross
section that displays non-stationary information. The patterns are not homogeneously dis-
tributed and their repetition on the TI is low and heterogeneous. In order to obtain a good
simulation output, it is needed to provide an auxiliary variable map that represents the non-
stationary information present in the TI. In this case the auxiliary variable is a continuous
variable map (Figure 3). We can see on the TI that the patterns follow a vertical trend.
Creating auxiliary variable can sometimes be challenging and thus discouraged the use
of non-stationary TI. Complex simulations can be created by using stationary TI coupled
with secondary variables such as orientation or scaling maps. The modeller should always
balanced the complexity of the process with the realistic expectation of the simulation.

Figure 2 — Typical delta shaped river. Three main parts with different characteristics can
be identified. This image shows non-stationary behaviour as the 3 parts display different
shapes and orientations. 1) The main river with a straight or meander shape. 2) Small
anastomosis shape channels. 3) Larger straight shape channels.
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2.2.3 The Direct Sampling algorithm : DeeSse

The algorithm used in this Master research is the Direct Sampling Multiple-point Statistics
algorithm (DeeSse) developed at the University of Neuchéatel by Prof. Philippe Renard and
his team. During the last twenty years, many different MPS algorithms have been devel-
oped - Snesim [Strebelle 2002], Impala [Straubhaar et al. 2011], Direct Sampling [Mari-
ethoz et al. 2010]. Each algorithm presents its own advantage and disadvantage regarding
the data storage, data type and CPU requirements. DeeSse shows many advantages as it
allows the user to work with categorical or continuous variables, to use multiple TIs during
one simulation and to work with multiple-variables [Meerschman et al. 2013].

DeeSse is an implementation of the direct sampling method, where the TI is not scanned
before the simulation, but randomly sampled as the simulation runs [Meerschman et al.
2013]. This method is statistically equivalent to other MPS methods, but offers the ad-
vantage of making database creation unnecessary [Mariethoz et al. 2010]. This method
coupled with a distance calculation approach - the value of the mismatch between data
in the simulation grid (SG) and in the TI - allows the algorithm to work both with cat-
egorical and continuous variables [Mariethoz et al. 2010]. With the use of DeeSse, it is
also possible to give to the algorithm additional information in order to constrain the sim-
ulation. Rotation value or maps can be used just like proportion or affinity maps. These
information help the algorithm to produce more realistic simulations based on the knowl-
edge of the modeller. Moreover, DeeSse allows to apply a specific weight on these hard
data in order to enforce patterns consistency in their neighborhood during the simulation
[Meerschman et al. 2013]. I present here the basic workflow of DeeSse (Figure 4) and the
different elements required for a simulation.

The first required object is a simulation grid (SG). We can create arbitrary volumes to sim-
ulate within the grid, these volumes are called regions. Regarding the use of hard data,
they must be spatially located inside the SG. The second essential element is the TI that
displays the pattern aimed to be reproduced. Once this two elements are present, simple
simulation can be performed. Other data can be used by the algorithm, such as rotation
map, trend map or affinity map. However, we here focus on the simplest case, one simu-
lation grid and one TI, to explain how the algorithm processes. Classic MPS algorithms
usually scan the whole training image before the simulation and save the probability of
patterns occurrence either in a list or in a tree shape file. This method is very memory
consuming because it requires to first scan every possible patterns in the TI and to store
them. DeeSse is a direct sampling method, the main difference is that the algorithm avoids
the usual pre-scanning and storing parts. Instead of looking at the probability of every
pattern in a list, the direct sampling algorithm samples randomly the TI in order to find

11
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a matching pattern. This method is less memory consuming and more flexible regarding
the type of data and auxiliary variables that are usable. Moreover, the randomly scanning
method is statistically equivalent to the probability list method.

At each step of the simulation, the algorithm chooses a point to simulate in the simulation
grid and stores the values and positions of its n closer neighbors. The training image is
then scanned randomly in order to find a similar pattern as the one selected in the SG.
DeeSse calculates a distance value to compare the SG pattern with the TI pattern [Meer-
schman et al. 2013] (Figure 4). For categorical value, the distance corresponds to the
average of the mismatch between each couple of points compared between the SG pattern
and the TI pattern. The distance value takes O for a perfect match and 1 for a complete mis-
match (Figure 4). For continuous variables, other mathematical definition of the distance
is recommended to be used instead of simple average one [Mariethoz et al. 2010].

Simulation

«— Auxiliary variable (continuous)
to describe the vertical trend in
the Tl and the SG

Figure 3 — Exemple of a MPS simulation using a non-stationnary training image. An aux-
iliary variable is created to constrain the simulation. The patterns are then well reproduced
during the simulation. (Modified from [Comunian et al. 2011])

12
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The three main parameters controlling the simulation are:
e n = the number of nodes taken for the pattern comparison,
e ¢ = the acceptance threshold,
e f = the maximum scanned fraction of the TI.

They influence the simulation time and its quality. The n parameter defines the size and
geometry of the pattern. At the beginning of the simulation, these n closer points are likely
to be located far away from the simulation point. However, as the simulation progresses,
the density of simulated point increases and the n closest points are likely to be located
near the central point. This feature ensures DeeSse to reproduce structures of all size
during the simulation, starting with large one and finishing with small and fine structures
[Meerschman et al. 2013]. Since a perfect match is not always found, DeeSse proposes
to use a parametric threshold value ¢. This threshold parameter is important regarding the
simulation of continuous values where perfect matches are rarely found. If the distance
calculated at the first random position in the TI does not respect the threshold parameter,
another point is chosen randomly on the TI and the distance is re-calculated. Once the
value of the distance has reached this threshold or that a perfect match is found between
the data and the TI, DeeSse copies the value of the central point found in the TI into
the simulation grid point. Another point is then chosen in the SG and the simulation
goes on until all the points of the SG are filled (Figure 4). Finally the f parameter helps
to reduce the simulation time while conserving realistic patterns reproduction. During
simulation if a fraction f of the TI is scanned without finding a pattern satisfying the
threshold condition ¢, the best scanned node (minimal distance) is retrieved. The same
principles are used for continuous and multi-variables. The distance based method makes
the algorithm very flexible, while the three parameters (n, ¢, f) allow the modeller to test
rapidly its simulation, while controlling its quality.

13



Multiple-point Statistics MSc Project 2017-2018 CHYN

NO

Simulation Grid

[7] node to simulate
® © O known neighbors

neighborhood with a
maximum of n neighbors

A

looking randomly
for the pattern in

© fraction f of the
o ’ training image

YES : copy node value from training image into simulation grid node

o\T | |q@-@=1 4®-®)=0
d= 17— - | ".'=an do-@)=1. 1 d= %@ - =avg d@-@)=0 =0
O \ diC-@)=1 O d(O-0)=0
Example 1 d : distance between researched and found patterns < t ? Example 2

Figure 4 — DeeSse algorithm work path for the simulation of a three categorical values
pattern expressed in the training image. The calculation of the distance value between the
TI’s data and the SG node is explained in the exemple 1 (mismatch of the pattern) and
exemple 2 (perfect match of the pattern). [Meerschman et al. 2013]
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3 Materials and Methods

I present in this section the different elements created for the MPS simulation and the basic
concepts of the post-simulation tests realized in this project. The creation of the different
auxiliary variables and the training image was an iterative task. During this project, I tested
different trend maps, rotation maps and T1Is in order to choose the most representative data
for the simulation. Most of the auxiliary data were first tested in a 2D grid in order to
understand their influence on the model. We developed new approaches for the creation
of the different variables in order to create complex 3D auxiliary variables. The use of
a non-stationary TI led to the creation of auxiliary variables maps (trend maps). Since
we aimed to produce a 3D model with trends along the z-axis, we had to create a 3D
auxiliary trend map. This implied the creation of a 3D trend, which took into account the
horizontal and vertical trends present in the aquifer. Figure 5 summarizes the different
elements created for the simulation, the different software used for their creation and the
principal steps. All the different elements influenced the final model and were essential
for the creation of the complex realistic 3D model (Figure 5). DeeSse was implemented in
the geostatistical modelling software AR2GEMS [AR2GEMS 2010], where the different
grids were created. We also used it for geostatistical calculation, data visualization and
post-simulation data treatment. AR2GEMS allows to work with Python script, which
provides a large flexibility for the modeller. In addition we use the ArcMap software
[ArcMap 2016] for the geographic and spatial treatment of our different shape and raster
files and the FEFLOW software [FEFLOW 2016] for the numerical flow calculation and
the creation of the trend maps.
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3.1 Simulation Grid

The first step was to create a simulation grid. I decided to first create a 2D simulation
grid before creating the final 3D grid. This 2D grid was created in order to test the sim-
ulation parameters and the training images (TIs). Simulations in a 2D grid were easier
and less time consuming and thus enable us to test different approaches. A shape file,
corresponding to the limit of the project, was provided and used for the creation of the 2D
grid. Then, I created two 3D grid corresponding to the PC. The first 3D grid correspond
to the real volume of the PC aquifer, whereas the second 3D grid is transformed regarding
the bottom elevation of the PC (flattened space). The second 3D grid was created for the
simulation, since we have decided to work with a 2D TI and 2D simulations, where one
simulation corresponds to a temporal sedimentation layer, we had to transform the grid in
order to simulate inside layers of same depositional age. These two 3D grids were created
from two raster files. These files were elevation maps of the top and bottom of the Pliocene
Continental layer. These elevation maps had been created and provided by a partner of the
Dem’eaux Roussillon project.
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Figure 5 — Summary of the different steps and the variables used with DeeSse for the
creation of the model.
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3.1.1 2D Grid

The first step in the creation of the 2D grid was to define its dimensions and resolution.
The dimensions of the grid had to be chosen according to: the size of the object aimed
to be modelled, the resolution of the simulation and the computation limitation. After
some tests and discussions, the 2D grid dimensions were set as: 407x504 cells (205’128
cells in total), with a cell dimensions of 100x100m. These parameters allowed to model
the sedimentary objects regarding their extent, while maintaining a low simulation time.
The grid was created by convert the shape file of the aquifer limits to a raster file with
a binary property called "inside". The value 1 was assigned when a cell was located
inside the simulation zone and 0 when located outside. We then imported this raster file
in the modelling software in order to create our 2D cartesian grid and the corresponding
simulation zone (Figure 6 - blue part). This 2D grid was a rectangular shape grid, based
on the dimensions of the raster (407x504 and 100x100m).

Figure 6 — The 2D simulation grid, the blue part corresponding to the simulation zone
(region). The dimensions of the grid was 407x504 and the cell size 100x100m.
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3.1.2 3D Grids

The process used to create a 3D grid was different than the 2D one. In order to create the
3D grid from the two 2D top and bottom raster maps, a Python script was created. First,
the two 2D raster files were imported in the modelling software as two properties of the
2D grid. The 2D grid then possessed two properties for every cell, the maximal depth of
the PC (the bottom property) and the minimal depth of the PC (the top property). The
second step was to create an empty 3D grid in which the 3D PC volume was inferred from
the two elevation properties of the 2D grid. The final 3D grid was defined with the follow-
ing dimensions; 407x504x250 cells (51°282°000 cells in total) with a cell dimensions of
100x100x2m. The z-axis dimension was defined regarding the minimal and maximal value
of the bottom and top properties. During the different tests, a first 3D grid with a 10m z-
resolution was created to test the parameters. We then chose to increase the z-resolution,
from 10m to 2m in order to use the maximum information available from log description.
The last step was to apply a Python script. The script went through every cell in the 3D
grid and compared the cell depth to the bottom and top depth properties of the same cell,
in the 2D grid. If the 3D cell depth was below the value of the bottom property, the code
assigned it a value O that can be interpreted as "outside the PC volume". If the cell depth
was above the bottom value and below the top value, the code assigned it a value 1 that can
be interpreted as "inside the PC volume". Finally, if the cell’s depth was above both the
bottom and top value, the code also assigned it a value of 0. A list was then created and the
calculated binary value implemented at each cell evaluation. At the end, the code assigned
the list to a new property of the 3D grid. A new region corresponding to the PC volume
was then created inside the 3D grid based on this new property. This region defined the
simulation zone of our 3D grid and corresponded to the volume of the aquifer (Figure 7
a). The Python script is available in the Appendix A.1.

Finally, a last 3D grid was created from the previous 3D grid. We called this new grid the
transformed grid. It was created based on the topography of the bottom of the PC. This grid
was transformed in order to work with 2D simulations that represent identical deposition
age. This approach required to simulate inside layers of same geological periods, and
thus required to transform the 3D grid regarding the topography of the PC bottom values
(Figure 8). A Python script was created to transform the grid (Appendix A.2). This script
first scanned all the positions of the 3D grid and computed from it a 2D index. This 2D
index was equivalent to the number of cells by which a cell had to be shifted on the z-axis.
When multiplied by the size of the z-cell dimension, this index was the depth that the code
must subtracted on a cell, in order to create the transformed grid (Figure 7 b). This 2D
index was also used to transpose the location of the hard data into the transformed grid.
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The last function of this Python script was used to transform back the grid after the MPS
simulations.

3.2 Hard data

In order to constrain the simulation and enhance the reality of the model, the use of hard
data (or conditioning data) is recommended. In MPS simulations, hard data correspond to
cells with an assigned value in the simulation grid. In our project, the hard data represent
cells where the facies property was defined. This information was inferred from borehole
data. The hard data used in this study were 52 well logs that had been described and inter-
preted. The 52 analyzed wells were mainly located on the Northern part of the Roussillon
Plain (Figure 9). These wells were digitized, vectorized and interpreted in terms of facies
deposits within the geological modelling software PETREL [Petrel 2017]. I interpreted the
facies regarding their gamma-ray and resistivity response curves. The wells were grouped
into cross-sections during the facies interpretation (Figure 9).
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a)

b)

Figure 7 — 3D simulation grids and 2D layers at different z-positions (Z=1 is the bottom
layer of the 3D grid). The first caption of (a) and (b) correspond to a top view of the 3D
grid. The figure (a) corresponds to the 3D grid inferred from the top and bottom properties
of the PC. The figure (b) corresponds to the 3D transformed grid as shown in figure 8.
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Figure 8 — Vertical cross-section of a 3D grid that is transformed regarding the bottom
altitude of its simulated zone.

We have previously described that 6 facies were identified in the outcrops. Due to the small
size of the levee deposit, this facies was left aside of the interpretation. The gamma ray and
resistivity logs allowed to see the change in sedimentary deposits and grain distributions
with depth. Sand sediments have small gamma ray response producing small peaks on
the curve, whereas clay sediments produce high response peaks in the curve due to their
high content in radioactive elements [Serra et al. 1975]. Fine sediments such as clay
have low resistivity response due to their grain size and water content [Serra et al. 1975]
whereas sand sediments tends to have a higher resistivity value. These two features allow
to distinguish the different deposit types along the borehole. For example, a meander river
deposit is associated with a half-bell shape curve in the gamma-ray response curve (10 -
purple facies). The sediment are at first coarse sand deposits associated with low gamma
ray response, which increases as the grain size decreases. Following these facies response
behaviour, we interpreted the 52 well logs (Figure 10). We finally exported the data in text
file. The resulting 52 text files were transformed using a Python script (Appendix A.3),
in order to be used as hard data by DeeSse. The hard data input file must be discretized
by points. Each point in the file must be described by its latitude and longitude, its depth
and its property (facies) for every meter. The code extracted the facies information and
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grouped them into one final text file. Moreover, it also collected, the longitude and latitude
of each borehole and copied the information to every discretized points on the final file.
Finally, the depth of every point was transformed to correspond to the transformed grid.

Legend
® Interpreter Wells
e Roussillon plain
Interpreted Cross Sections
Name
Coupe2
Coupe21

Coupe3

Coupe31

Coupe4
Coupe41

Coupe5

Coupe6

Coupe7

Figure 9 — Location of the 52 analyzed wells over the Roussilon Plain. The well logs have
been interpreted along 9 cross sections.

3.3 Training Images

In order to create the TI, we first had to decide, which facies were the most relevant for
this model. From outcrop observations and well logs analysis, six sedimentary facies were
identified (the codes were used for their simulation) :

e Facies code 0 : Floodplain sediment

Facies code 1 : Braided river sediment

Facies code 2 : Meander river sediment

Facies code 3 : Crevasse splay sediment

Facies code 4 : Alluvial cone sediment

Facies code 5 : Levee sediment
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Figure 10 — Caption of an interpreted cross section composed of 5 well logs. The blue
color corresponds to the floodplain deposit (code 0), the yellow color to the braided river
deposit (code 1), the purple color to the meander deposit (code 2), the brown color to
crevasse splay deposit (code 3) and the green color to the alluvial fan deposit (code 4).

Due to the large number of facies and the complex sedimentary processes that were as-
sociated, we chose to use a non-stationary training image. By using a non-stationary TI ,
we were able to express all of the deposit types in one TI (Figure 11 e). Different TIs had
been constructed and tested (Figure 11 a-d). The TI (a) was the first TI tested, after the
simulation we decided that the number of crevasse splay deposit had to be increased. The
TI (b) was used to test large crevasse splays. The third TI (c) proposed a new connectiv-
ity pattern between the alluvial fan and the braided river and used only five facies (levee
and crevasse were combined). Finally, we proposed to add crevasse splay deposit around
the braided river, following the idea that the presence of the floodplain must be combined
with overflow structure (Figure 11 d). These TIs had been tested in the 2D simulation
grid. The final training image chosen for the simulation represented the best combination
of the previously tested TIs. The final TI (e) was composed of 6 different facies. The
alluvial fan covered the entire left part of the TI, the braided river start from every part of
the fan, the crevasse splay and the levee are separated and the extent of the crevasse splay
had been increased. This image had been laterally duplicated in order to control the lat-
eral connectivity of the deposits. The final dimensions of the training image was 100x125
with cell size of 100x100m. These dimensions had been chosen in order to avoid affinity
transformation during the simulation.
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Figure 11 — Training images used for the simulation. The TI form (a) to (d) were used for
the test of the facies descrition. The final TI used for the model was the TI (e) (100x125,
100x100m). All of the TIs were made using a free drawing software.

3.4 Trend Maps

After the creation of the TI, the following step was to produce the auxiliary data. We
had to inform the algorithm where the patterns of the TI had to be reproduced in the
SG. Two auxiliary maps (trend maps) had to be produced, one for the TI and one for the
simulation grid. These two trend maps had the same data range. These data served to
guide the simulation, if a simulated node of the SG had an auxiliary data value of “0.4”,
the algorithm would search a corresponding node in the TI that satisfied both the auxiliary
data and the pattern consistency. The trend map for the TI was produced with AR2GEMS,
which allowed to create simple auxiliary properties that shared the same extent than the
corresponding grid. The TI trend map was a simple gradient going along the x-axis (Figure
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12). It started from the right with the O value and goes to 1 on the left side of the TI.
Other trend maps for the T1 were tested. By using Python script, different auxiliary maps
were created for the T1, where the gradient distribution was modified. After some test, we
decided to let a liberty degree during the simulation for the gradient value (higher threshold
value) and thus we used the standard gradient distribution for the simulation (Figure 12 a).

Creating trend maps for the simulation grid was complex and required to develop a new
approach, different from the one used for the TI. Since the simulated area was not the
entire grid, the AR2GEMS gradient was not used. Moreover, a linear gradient would not
display the horizontal heterogeneity of the plain trend. A new approach was developed to
create complex auxiliary maps for non-rectangular grid. We used the groundwater flow
simulation software FEFLOW [FEFLOW 2016] in order to create the gradient map. The
idea was to use a flow simulation calculation to generate a realistic auxiliary map that
respected the shape of the plain and displayed the evolution of the sedimentation. We as-
sociated the evolution of the gradient value to the evolution of the hydraulic head between
a source zone and an outflow zone. Since the TI represented the complete evolution of the
sedimentation process in the plain, the trend map could be represented by the evolution
of the hydraulic head through the plain between the sources (river input) and the outflow
zones (the sea).

The first step was to create a simulation grid in the flow simulation software that repre-
sented the Roussilon Plain. We exported the contour of our 2D model as a shape file from
ARCGIS and imported it in FEFLOW. We then generated an advancing front shape mesh,
composed of 1850 elements, inside the limit defined by the shape file. The shape of the
mesh and the number of elements that composed it did not influence the flow transport
calculation because we only simulate simple hydraulic head calculation. Once the mesh
was created, we define the ouput zone of the grid. The output zone corresponded to the sea
shore of the plain, where we fixed a boundary condition (BC) of Om for the hydraulic head
parameter. Then we had to define the input zones of the plain. We defined four input zones
corresponding to the three main rivers of the actual plain and one zone corresponding to
the south relief (Figure 13). We assigned a BC hydraulic head of 100m to these zones.
In order to produce a continuous trend, the input zones were enlarged comparing to the
real river entrance positions. The hydraulic head value chosen for the simulation did not
have a physical meaning, it was chosen to produce a homogeneous trend that reproduced
the morphology of the plain. After the boundary conditions were defined, we ran the flow
simulation as a steady states saturated groundwater-flow. We finally used the output of the
flow simulation to create our trend map. The hydraulic head fringes computed in the mesh
were exported as a shape file to be post-treated in ArcMap. The hydraulic head fringes
were represented by polygon objects in the shape file. We used ArcMap to modify the
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property of the fringes. We transformed the hydraulic head value of the polygon fringes to
a gradient field going from O to 1 (Figure 12). The last step was to convert the shape file
to a raster file and to import it into AR2ZGEMS for the MPS simulation.

a) b)
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Figure 12 — 2D auxiliary variables for the TI (a) and for the 2D simulation grid (b).

The creation of the 3D auxiliary map used the same method that the 2D auxiliary map. We
repeated this 2D approach for 11 representative layers before stacking these maps together
to create a 3D auxiliary map. The first step was to extract the layers from the 3D grid and to
apply the auxiliary map creation process to each one of them. After transformation, the 3D
SG was composed of 110 layers, simulating an auxiliary map in each one of these layers
would have been time consuming. Since the shape of the 2D layers did not change rapidly
between layers (the layers 24 is almost the same as the layer 28 or 29), 11 representative
layers were chosen to represent the different auxiliary maps. This technic allowed us to
control the progradation of the system. During the sedimentation, the plain was prograding
toward the sea. This means that the patterns of the TI had to be moved toward the sea
as we moved up on in the layers. This is illustrated on figure 14, where the blue part
moves toward the right side of the trend map as the altitude of the layers increased. Once
simulated, the auxiliary map of a selected layer was copied until the second simulated
layer. We choose to simulate 11 layers; 0, 10, 20, 30, ..., up to 110. Once simulated, the
layer O will be assigned to the layers O, 1, 2, 3, 4, ..., 9, then the layer 10 to the next 10
layers and so on until all the layers had an auxiliary map affected. This was programmed
using a Python script (Appendix A.4). With this technic, a complex 3D auxiliary grid was
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created, accounting for the river input zone, the horizontal trend and the vertical trend of
the sedimentation process of the plain.

3.5 Rotation Maps

The last auxiliary map created for the simulation was the rotation map. By informing the
algorithm of the channels orientation, a better and realistic simulation was aimed to be
produced. DeeSse allowed to use a continuous rotation parameter for every cell, which is
not possible with other MPS algorithms [de Carvalho et al. 2017]. This feature enabled
to use realistic rotation map with smooth transition zones. The rotation map provided
information about the channels’ orientation on the plain. This map was created from direct
field observations and from the actual rivers orientation observed on the plain. The map
was generated in ArcMap, the first step was to create orientation lines that covered the
plain. We drew lines along the principal zone of the plain and had a rotation field for every
line. The rotation field were values corresponding to the rotation of the pattern desired in
the simulation. A positive value corresponds to a clockwise rotation and a negative value
to a counter-clockwise rotation of the pattern. Once created, the lines were transformed
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Tét river H = 100m
Canterrane H =100m
Tech river H = 100m
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Figure 13 — The FEFLOW mesh and the different boundary condition zones.
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Figure 14 — The 3D auxiliary variable for the 3D transformed grid. The prograding sedi-
mentation process was represented by the shifting of the blue fringes towards the sea. Both
vertical and horizontal trends of the PC were integrated in the 3D trend map.

to points using the "points from lines" tool proposed in ArcMap. With this procedure, we
obtained rapidly a large set of points with a rotation field that covered the entire plain. This
set of points was then used to produce a kriging map of the rotation field. The kriging map
was finally transformed to a raster file and exported (Figure 15).

DeeSse allows to work with two rotation maps that define the minimum and the maximum
value of the rotation. This method allows the simulation to be more flexible on the rotation
value. We modified the rotation map in order to create a second one with a rotation shift of
20°, which gives a liberty of 20°during the simulation. The last step was to create the 3D
rotation map. We assumed that orientation of the channels were constant through time and
thus identical over the different layers. The two 3D rotation grids were therefore generated
by assigning the 2D rotation maps to every layers of the transformed 3D grid.
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Figure 15 — 2D rotation map. The North area (red zone) corresponds to a clockwise ro-
tation of the TI patterns. The central zone (greenish zone) corresponds to a zone where
patterns are not rotated. The South zone and West zone (blue zone) defines a counter-
clockwise rotation of the patterns.

3.6 Simulation Parameters

We present here the main parameters chosen for the simulation. The complete input pa-
rameter file is available in the Appendix section (Appendix A.5). Each parameter was
tested and chosen in order to optimize the simulation time without impairing its quality.
In our simulation we did not use the scaling ratio (affinity ratio) because the size of the
patterns in the T was already matching the size of the modelled objects. The rotation with
tolerance option was used in our simulation. The tolerance was fixed by the two rotation
maps previously created. Two variables were used during the simulation, the facies pa-
rameter (with the TI) and the trend parameter (with the trend map). We defined for these
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two parameters, the search neighborhood parameter, the maximal number of neighboring
nodes, the weight factor for the conditioning data and the distance threshold parameter as
shown in Table 1. The maximal scanned fraction of the TI was set to 0.5 and no pyramid
level was used for the simulation.

Once satisfied with the 3D simulation, the last step was to produce a large number of
equally statistical simulations in order to compare them and studied their variations. This
part was performed using the CPU cluster of the university, allowing to parallelize the
computation between the CPUs and reducing drastically the simulation time. 100 sim-
ulations were performed, they all shared the same input data and parameters, the only
change was the seed number of the stochastic calculation. A random list of numbers is
calculated by the algorithm during simulation. These random numbers define the path in
which points are simulated. It is important to be able to reproduce a simulation in order
to control the different parameters. The use of a seed number and a random number list,
allowed reproducibility in simulation.

Table 1 — Main parameters used for the MPS simulation with the DeeSse algorithm.

Search

Neighborhood Maximal number of

arameter: neighboring
P o s nodes Weight factor for conditioning data Distance threshold
-search radius in each direction
anisotropy ratio in the search
. Py neighborhood
-rotation angle
Facies 20200
arameter 111 24 5 0.05
P 000
Trend parameter 2(1) ?010 10 - 0.25
000
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3.7 Probability Maps and Shannon Entropy

In order to understand and visualize simply the uncertainties that were considered in our
model, we created a set of 100 simulations. The stochastic approach allows to generate
sets of equiprobable outputs. Simulating a large number of realisation from our model
enable us to calculate probability maps for every facies based on the set of simulations.
These maps display the probability of a facies to be simulated at one location based on
the simulations set. If a facies is well understand and largely constrain, it is likely that
all the simulations will simulated this facies at the same location and thus the probability
map will display a high probability of simulation. Howerver, if a facies is less understand
and constrain, its probability map will display larger zone of occurrence through the sim-
ulations with smaller probability value. These maps helps the modeller to understand its
model and its uncertainties.

We then used these proportion maps to calculate the Shannon Entropy of the set. The Shan-
non Entropy represents the amount of information that is included within a probabilistic
distribution. The Shannon Entropy comes from the theory of information developed by
Shannon in the middle of the 20th century [Shannon 1948]. It is a probabilistic theory that
defines the amount of information contained in a data set. This theory was developed to
estimate the maximum quantity of information that can be delivered by a certain source.
It is also used to calculate the maximal encoding of a signal in order to avoid loosing any
information. The quantity of information is equivalent as the amount of uncertainty con-
tained in the simulation. Thus, when the data source has a low-probability value, the event
carries more information than the source data which has a high-probability value. It can be
viewed as a variance-like representation of the simulations, only for continuous variable.
The formula of the Shannon Entropy is expressed as:

n
Zpl*logb (1)

l

where b is the logarithm base and p; the probability of occurrence of the element i. The
logarithm is usually in base two for the binary encoding use. We used the base six in our
calculation which corresponds to the number of different facies in the simulation. The
entropy is by definition, maximal when all the outcomes have equiprobable statistics and
is defined as null when there is no variation in the source signal. I used a Python script to
calculate the entropy of the set of 100 simulations (Appendix A.6). The script extracted
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the probability of every outcome from the proportion maps, then calculated the entropy
and created a new property to the 3D SG. The value of the calculated entropy was only a
qualitative information and it allowed us to determine the zones of high entropy or large
uncertainty.

3.8 Transmissivity Estimation

Finally, we tried to calculate the hydraulic conductivity of the simulated facies. 180 trans-
missivity values were measured over the Roussillon Plain. I used this set of data to calcu-
late the hydraulic conductivity of the simulated facies. Two approaches were tested. The
first one implied the use of a linear regression analysis using an inverse matrix calculation.
The second approach used an optimization algorithm in order to minimize the error be-
tween the logarithm measured transmissivity and the logarithm calculated transmissivity,
while adjusting the hydraulic conductivity values. I used a Python script to extract the
facies of the simulation and to test the two approaches (Appendix A.8).

I first tested a least square estimation of the hydraulic conductivity. It required to get the
conductivity value of the six simulated facies in respect to the measured transmissivity
location. The transmissivity is calculated from the permeability by the folowing equation:

6
Ti=) ejK;j, i=1,..,180 (2)
j=1

e T7;: transmissivity measured at point i, i =1,...,6
e K; : hydraulic conductivity of facies j (K; unknown), j=1,...,6

e ¢;; : length portion of a facies j along the vertical axis at point measurement i

Once written in the matrix form, the matrix dimensions become:

T180,1 = E180,6 - Ke 1 (3)
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After some matrix transformation, the final system that was calculated corresponded to:

K=[E -E "-E.-T 4)

The second approach used a optimization calculation in order to determine the best hy-
draulic conductivity parameters that minimize the error between the logarithm measured
transmissivity and the logarithm calculated transmissivity:

E= <10g<Timeasured)2 - log(Tiestimated>2) (5)

-

1

~

The optimization algorithm tried to minimize this objective function, by adjusting the
input parameters of the function - the hydraulic conductivities. Such method allowed to
define bounds of values for the input parameters. Classic optimization algorithms are
usually based on gradient slope analysis. The chosen optimization algorithm was the
Sequential Least squares Programming (SLSQP) optimizer from the scipy Python library.
The Least square method is a classic approach in analyse, used in order to approximate a
solution of an overdetermined system. This optimization method was coded in a Python
script (Appendix A.8). At each step of the optimization the algorithm aimed to reduce
the objective function and so the error between calculated and measured transmissivity.
This SLSQP method works with both linear and non-linear function which makes it very
flexible.
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4 Results and Discussions

After presenting the different variables created for the MPS simulation, we now present
the result of the multiple-variables model performed with the DeeSse algorithm. A first 3D
model has been simulated and is now presented. Using the same parameters, a set of 100
simulations was performed. We used this set to calculate probability maps of the six facies
and we estimated the amount of uncertainty of the model by using the Shannon entropy.
Two other sets of simulations were also created and analysed in order to understand the
influence of the distance between meander bed in the TI, these two sets are presented in the
Appendix A.9 - A.10. Vertical proportion curves (VPC) were created and are presented in
this section. We used the VPCs to provide a visual validation of the model by comparing
the VPC of the hard data with the VPC of the simulations. Finally, an inverse validation
method has been tested. We inferred the hydraulic conductivity of the different facies from
transmissivity measurements. We then calculated back the transmissivity and compared
the difference between the measured and the calculated transmissivity.

4.1 3D Mutiple-Variables Simulation

Our 3D model was created by using all of the previous auxiliary maps, which reflected our
knowledge of the sedimentation processes of the plain. The output of the MPS simulation
is presented on figure 16. The simulation was performed inside the transformed grid.
The simulation happened to reproduce well the training image patterns over the different
layers of the grid. Moreover, the prograding process of the sedimentation plain was well
simulated and was visible with the progression of the alluvial fan facies through the upper
layers. With the addition of a liberty degree to the trend variable, the simulation increased
the hard data and patterns consistency, while honoring the rotation maps. The multiple-
variables approach combined with a complex rotation map was a success, we produced a
large and complex realistic model of the Continental Pliocene aquifer.
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Figure 16 — The 3D multiple-variables MPS simulation. The first left figure represents a
top view of the 3D model. The other figures represent different simulated layers of the
transformed 3D gird. Both vertical and horizontal trends of the plain were successfully
simulated.

We then transformed back the 3D simulation to the initial 3D grid. The cell vertical di-
mension of this grid was multiplied by a factor 100 in order to study the connectivity of
the layers and the overall aspect of the simulation (Figure 17). The connectivity between
the different elements of the layers was not controlled during the simulation other than
by the use of hard data. The simulation presented different vertical connectivity zones,
the South part of the simulation seemed to be more vertically connected, compared to the
North part of the plain. This could be explained by the presence of a higher number of
hard data in the North plain. When compared to the geological cross section of the plain,
the connectivity of the South part seemed over-estimated.
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Figure 17 — 3D MPS simulation, the 3D grids are vertically deformed by a factor 100.
The first column corresponds to the transformed grid, while the second corresponds to the
normal grid.
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The model succeeded to honor the patterns and trends reproduction. The new multiple-
variables approach used in this project yield to the creation of a complex 3D model of the
Roussillon Plain. The trend and rotation maps have successfully transferred the geological
knowledge of the Plain to the algorithm. However, a higher number of hard data more
homogeneously spatially distributed would have more constrained the vertical connectivity
of the layers. Another approach could have been to define vertical limits where the vertical
connectivity could had been constrained.

4.2 Probability maps and Shannon Entropy

We then proposed to study the set of 100 simulations in order to determine the zones of
high variability. After the set of simulations was performed, we were able to produce
post-simulation proportion maps for every facies (Figure 18). These proportions were
calculated from the set of 100 simulations and allowed to determine for each facies the
spatial variability of pattern reproduction based on our model. Some facies appeared to be
more spatially constrained on the plain than others. The alluvial fan deposit presented very
small spatial heterogeneity. It also appeared that the meander deposit presented a small
spatial heterogeneity between the simulations. Since the meander facies was not well
represented on the well logs analysis and that we allowed a 20°of liberty for the rotation
parameter, we were expecting more variation in the spatial distribution of this facies. It
appeared that the distance between each meander bed was too constrained by the TI. This
was proved by performing two other simulations sets. One set with a TI that did not show
lateral repetition and another one with the normal TI but without hard data. Even if the
probability maps produced by the set of simulation without lateral repetition seemed to
produce more variations in the meander spatial distribution, the facies proportion and the
visual aspect of the simulations were not conclusive (Appendix A.9 - A.10). More work
needs to be done to better understand the distance betweeen the meander channels and
their lateral variations.

The calculation of the Shannon Entropy enables to group the information from the six
proportion maps inside a single map (Figure 19). It appeared about the meander facies
deposit and the central part of the plain from this analysis that more information need to
be gathered. Another possibility is that the shape and dimensions of the meander bed in
the TI are not representative of the reality of the deposit and need to be redefined.
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Figure 18 — Probability maps of every facies, calculated from a set of 100 statistically
equivalent simulations. It appeared that the meander bed displayed no variability in their
spatial location and was possibly too constrained in the model.
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Figure 19 — Shannon entropy of the model, based on the proportion maps calculated for
every facies.

4.3 Vertical Proportion Curves

We calculated vertical proportion curves from the well logs data and the simulations. This
approach was used to assess the quality of the simulation [Ravenne C 2002]. We tested the
reproduction of the vertical proportion trend by comparing the VPC of the well logs and
the VPC of the simulation. Due to the small quantity of data and their spatial distribution,
the wells VPC could not be quantitatively representative of the whole aquifer.

The VPC represents the facies proportion corresponding to a horizon in the aquifer. We
transformed the depth of the well data into a relative depth calculated in regard of the
bottom elevation of the PC. The first proportion corresponded to the bottom layer of the
aquifer. We used a Python script (Annexe 6) to extract the proportion information from
the simulation and to calculate the horizontal proportion of every layer. Two VPCs were
produced from the simulation, the first one with a proportion normalized for five facies,
the second one with the six facies proportion (Figure 20). The VPC of the hard data was
created following the same transformation (Figure 20). The created VPCs allowed to read
the evolution of the facies’ proportion from the bottom to the top of the PC.
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The VPC of the hard data seemed to underestimate the proportion of meander river com-
pared to the field observations. Moreover, we should find alluvial fan deposits through the
entire height of the aquifer. It appeared that the simulation reproduced more alluvial plain
facies and more meander facies than the hard data. This was a good output of the simula-
tion, since it was known that these two facies were under-estimated in the hard data. The
floodplain proportion was reproduced with success by the simulation just as the crevasse
splay facies. Finally we observed on both simulation and hard data, a shift in the sedimen-
tation of the plain around 180m. This shift could be linked to the erosion of the plain by
Quaternary river or by a miss-interpretation of the top limit of the PC.

The creation of VPCs was a useful tool during the development of our model, the test of
the parameters and the final quality assessment of the simulation (Appendix A.7). It is not
always easy to visualize a large 3D model and to understand its proportion distribution.
The comparison between hard data’s VPC and simulation’s VPC was also interesting but
should have included more well logs data. Despite the 52 wells used in this approach, the
size of the plain required a higher number of interpreted wells. Moreover the distribution
of the wells should be more homogeneous.

VPC Wells VPC Simulation VPC Simulation
(5 Facies) (5 Facies) (6 Facies)

a) b) )

Depth from the PC's bottom
Depth from the PC's bottom
Depth from the PC's bottom

Figure 20 — Vertical proportion curves calculated from the hard data (a) and the simulation
with five facies (b) and six facies (c). The horizontal axis corresponds to the facies per-
centage. The zero altitude corresponds to the bottom of the Continental Pliocene. For the
simulations VPC, we specify that the vertical axis refers to the number of layers in the 3D
model. Thus, the vertical depth has to be multiplied by the cell dimension (2m) in order to
be compared to the wells VPC.
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4.4 Transmissivity Estimation

In this last part, we propose to discuss the results of the transmissivity estimation ap-
proaches that were used to determine the hydraulic conductivity values of the sedimentary
facies. The first approach was to solve an inverse problem, using the transmissivity data
to calculate the hydraulic connectivity of the simulated facies. After the simulation, we
extracted the different facies corresponding to cells location where a transmissivity value
was known. Using a Python script, we then resolved the matrix inverse calculation. When
resolving the equation system, the calculated values of hydraulic conductivity for the dif-
ferent facies did not have any physical sense (Table 2). Since the solution that satisfied this
matrix system was not constrained by any bounds, the resulting hydraulic conductivity val-
ues included negative results. I calculated back the transmissivity from the hydraulic con-
ductivity solutions in order to compare the measured and calculated transmissivity (Figure
21, blue cross). The plot showed that the calculated parameter did not succeed to approach
the measured transmissivity.

The second approach was performed to overcome the negative value issue of the hydraulic
conductivity and to improve the fit between calculated and measured data. This approach
calculates the mean square error (MSE) between the logarithm of the measured transmis-
sivity and the logarithm of the calculated transmissivity by using an optimization algo-
rithm. The bounds were defined in order to keep the values of hydraulic conductivity
positives. The optimization process also required as entry parameter a list of initial values
for the variables. After different tests on the initial variables, an optimal list was found :
K0 =0.005, K1 =0.2, K2 =0.25, K3 =0.1, K4 = 0.05 and K5 = 0.01. During those tests,
the bounds conditions were also tested. It appears that the best optimization calculation
were found when the bounds were the least restrictive. The returned hydraulic conductiv-
ities were all positive. However, the hydraulic conductivity of the facies were still very
different than the one expected (Table 2). For example, the value of hydraulic conductiv-
ity of the floodplain facies was higher than the one corresponding to the braided river or
the meander river. The floodplain sediments are mostly composed of silt and clay which
should have a lower conductivity value than the braided sediments that are composed of
well sorted sands. When plotted against the measured transmissivity, the calculated trans-
missivity from the optimization approach did not succeed in reproducing the measured
values (Figure 21). The second approach has also been tested with the set of 100 simula-
tions, however the results were not conclusive either.

It appeared that the assumption we made that the sedimentary facies were represented by
unique conductivity value was erroneous. It was impossible with this assumption to find
a unique conductivity value for each facies that satisfied the calculation of transmissivity.
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Even with the optimization of the MSE function, there was always a residual error that
could not be corrected. The hydraulic conductivities of the facies must be described by
a range of values and are likely to be heterogenous according to their spatial location.
The use of other methods should be prescribed to determine the range of the hydraulic
conductivity of the sedimentary facies.

Table 2 — Results of the K estimation (m/s) from both methods, the matrix inversion and
the MSE optimization.

Floodplain Braided river Meander river Crevasse splay Alluvial fan Levee

K1 (1079) 3.07 2.48 2.97 -3.94 -4.71 1.26
K2 (1079) 3.35 0.73 0.28 0.57 5.79 0.23
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Figure 21 — Validation plot between the calculated and the measured transmissivity (m? /s).
The blue crosses represent the inverse matrix calculation and the red points, the optimiza-
tion calculation. Both approaches did not succeed to estimate the K parameter in order to
approximate the transmissivity value.
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5 Conclusion

The aim of this project was to model the 3D geological heterogeneity of the Continental
Pliocene aquifer of the Roussillon Plain. We could show that the Multiple-point Statistics
approach and the DeeSse software allowed us to obtain plausible geological heterogeneity.
This is the first application of this type of technique at that scale and for such type of
aquifers.

The strength of the MPS technique and the DeeSse algorithm is that they offer multiple
ways to model a geological system. The modeller can approach each problem with a
different angle, which makes MPS, and especially the DeeSse very powerful and flexible.

Our work illustrates how these techniques can be applied using non-stationary multivariate
simulations with the DeeSse algorithm. We used different approaches to manage the non-
stationarity of the training image and constrain the model with 3D auxiliary variables.
The final model shows plausible sedimentological patterns and trends reproduction while
honoring the borehole data.

The robustness of the model has then been tested with a set of 100 stochastic simulations.
From probability analysis and vertical proportion curves descriptions, it appeared that the
model was missing sufficient borehole data to be fully constrained. The actual distribution
of the hard data over the plain does not provide enough information to constrain all the
facies. In particular, the meander river deposits appeared to be not fully understood, either
in the training image description or in the borehole logs analysis.

Finally, we showed that we could not estimate the hydraulic conductivity of the different
facies as constant values for each facies. The linear regression failed to provide fixed con-
ductivity values that would allow to reproduce simultaneously all the observations. The
hydraulic conductivity of the different facies is more likely to vary over the plain within
the different facies. Other approaches should be used in order to determine their range of
values. Permeability measurement from core logs along the plain could be used to cal-
culate the hydraulic conductivity of the different facies and to study the spatial variation
of this parameter. These permeability measurements, from core analysis, could be cali-
brated in a study site using a straddle packer to isolate the different facies horizons and
then performing slug or injection tests.
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The next steps to improve the final models would be to increase and harmonize, in terms of
facies, the well log database of the Roussillon plain. The vertical connectivity, the vertical
facies proportion trend and the vertical dimension of the objects are only constrained by
the hard data. With an increase of hard data density, the quality of the model is likely to
be enhanced.

Geophysical data could also be used to constrain the model and increase our knowledge
regarding the meander bed. The general shape, the lateral connectivity and the distance be-
tween the beds could be understood and integrated to the training image to better constrain
this facies.

Validation tests should also be developed for the simulation. Cross validation and vertical
facies transition probability could be calculated to test the model. Moreover, the vertical
size of the different objects could also be statistically calculated and compared to the log
data.

One limitation to all of these approaches is the quality of the facies interpretation of the
borehole logs and the spatial distribution of the data. Depending on the quality of the
gamma-ray and resistivity logs and on the assumptions made for the interpretation, the
quality of the validation process could be limited. For example, the decision to interpret the
logs along cross-sections or individually is likely to result in different facies interpretation.
The other limitation is about the size of the object modelled that cannot be controlled by
DeeSse. It is likely that the size of the object will be realistically simulated near dense set
of hard data but we don’t know how far this information can be transferred laterally where
the hard data network is less dense.
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A Appendix
A.1 SG 3D Creation

# -*- coding: utf-8 -*-
import sgems

###Juin 2018 Valentin

#0n récupére les dimensions du grid 3D
grid_geom = sgems.get_grid_info("SG3D")

nx = int(grid_geom[’num_cells’][0])
ny = int(grid_geom[’num_cells’][1])
nz = int(grid_geom[’num_cells’] [2])

#Récupére les informations des altitudes mur et toit

z_bottom_name = "alt_mur_PC"

z_top_name = "alt_toit_PC"

z_bottom = sgems.get_property("SG2D",z_bottom_name)
z_top = sgems.get_property("SG2D",z_top_name)

#0n définie le nom des zones a créée; deux layers => 3 régions, l’aquifer 3D correspondera & la région 2

regionl_name = "regionl"
region2_name = "region2"
region3_name = "region3"

#Taille d’une couche du grid
nxXy = nx*ny

#0n stocke les propriétés d’altitude de toutes les cellules du grid 3D
z = sgems.get_property("SG3D","_Z_")

#0n crée les couches par rapport a leur valeur z et & la valeur toit et mur de la méme position
layer = [sgems.nan() for i in range(len(z))]

for k in range(len(z))

if z[k] <= z_toplk¥nxy] and z[k] >= z_bottom[k¥nxy]:
layer([k] = 1

#0n assigne la nouvelle propriété créée contenant 1l’aquifére au grid 3D
layer3D_name = "layer_OK"
gridName = "SG3D"

#0n assigne les valeurs de la list layer dans la propriété layer_ok dans la couche SG3D
sgems.set_categorical_property_int ("SG3D",layer3D_name,layer) #0

#0n crée des régions pour chaque couches
for i,region_name in enumerate([regionl_name, region2_name, region3_name])
sgems . execute ("SetRegionFromCategoricalPropertyIf {}::{}::{}::L{}".format(gridName,region_name,

layer3D_name, i+1))

print "THE END"
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A.2 SG 3D Transformed Creation

# -*%- coding: utf-8 -*-

#Valentin Mai 2018

def topoToGrid(gridName,propertyName,valeurPropertyln):
import sgems
#it#
#Récupére les info du grid 3D
#it#

grid_geom = sgems.get_grid_info(gridName)

nx = int(grid_geom[’num_cells’] [0])
ny = int(grid_geom[’num_cells’] [1])
nz = int(grid_geom[’num_cells’] [2])
grid = sgems.get_property(gridName,propertyName)

sizelLayer = nx * ny

#it#

#Récupére toutes les couches en format une couche par liste dans une seule et méme liste
#i#H#

layer = []

for i in range(nz):

compteurl = 0 + i * sizeLayer
compteur2 = (i + 1) * sizeLayer
layer.append(grid[compteurl:compteur2])

#iH#

#0n crée une carte d’altitude ainsi qu’une liste de liste, contenant toute les colonnes
#de la couche applatie

##H#

colonne = []
alt = [-1 for u in range(nx * ny)]

for i in range(nx * ny):

z =[]

for j in range(nz):
layerZ = layer[j]

if layerZ[i] == valeurPropertyIn:
z.append (1)

if alt[i] == -1:
alt[il = j
if len(z) !'= nz:

while (len(z) !'= nz):
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z.append (0)
colonne.append(z)

#it#

#0n crée un nouveau grid a partir des colonnes précédentes,

#transformé par rapport a& la topographie
H#H##

gridTransfo = []
for i in range(nz):
for j in range(nx * ny):
z = colonnel[j]
gridTransfo.append(z[il)
#0n crée la nouvelle propriété grid transformé,
#c’est dans ce grid que les simulations vont avoir lieux

sgems.set_property(’SG3D’, ’GridTransfo’, gridTransfo)

print ("Fonction topoToGrid terminée")
return(alt,gridTransfo);

#Fonction qui re-transforme un grid avec la bonne altitude
#Valentin Mai 2018

def transfoBackToTopo(gridName,alt,gridTransfo):
import sgems
#it#
#Récupére les info du grid 3D
#it#

grid_geom = sgems.get_grid_info(gridName)

nx = int(grid_geom[’num_cells’] [0])

ny = int(grid_geom[’num_cells’] [1])

nz = int(grid_geom[’num_cells’] [2])
#H#H#

#0n transforme le grid 3D en liste de couches
#H##

layersTransfo = []

positionGrid = 0

for i in range(nz):
layerT = []

for j in range(nx * ny):
layerT.append(gridTransfo[positionGrid])

positionGrid += 1

layersTransfo.append(layerT)
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HH##
#0n créer un grid 3D vide ainsi qu’une liste de couche de ce grid vide
H#H##

gridBack = [sgems.nan() for u in range(nx * ny * nz)]
layersBack = []
for i in range(nz):
listeB = [sgems.nan() for u in range(nx * ny)]
layersBack.append(listeB)
#H##
#0n retransforme les couches une & une

#H##

for i in range(nz):
layerZTransfo = layersTransfol[i]

for j in range(nx * ny):
b = alt[j] + i

if str(layerZTransfol[jl) !'= 1:
layersBack[b] [j] = layerZTransfol[j]

Hit#

#0n crée le grid 3D retransformé avec les propriétés simulées
Hit#

gridBack = []

for i in range(nz):

for j in range(nx * ny):
gridBack.append(layersBack[i] [j])

sgems.set_categorical_property_int (’SG3D’, ’BackToBack’,gridBack )

print ("Fonction transfoToGrid terminée")
return;

#Hi#
#Appelle des fonctions et exécution du script
#i##

# -*- coding: utf-8 -*-
import sgems

gridName="SG3D"
property="layer_OK"
valeur=2

alt,gridOut=topoToGrid(gridName,property,valeur)
simuPropertyName="SimuWellTrendOrientationWeight1l_real00000"
simuProperty=sgems.get_property(gridName, simuPropertyName)

transfoBackToTopo (gridName,alt,simuProperty)

print "THE END"
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A.3 Well Data Extraction

# -*%- coding: utf-8 -*-

import txtToPointSet as toP
import pandas as pd

###Valentin JUIN 2018

exportAllWell = []
nombreFile = 52

for i in range (nombreFile):

fileName = toP.getFileName(i)
coordonnee = toP.getCoordinate(str(fileName))
facies = toP.getFacies(str(fileName))

for j in range(len(facies)):
exportAllWell.append(str(coordonnee)+’,’+str(facies[j]))

#Export le fichier csv final

df = pd.DataFrame(exportAllWell,columns=[’ID,X,Y,Z,PC,Profondeur,Facies’])
df .to_csv(’exportPointSet.csv’,index=False)

#Supprime les "" et transforme le fichier
#Chaque ligne correspond désormais & une profondeur de passe de puits

with open("exportPointSet.csv","r") as myFile :
text = myFile.read()
text = text.replace(’"’,??)

myFile.close() #Ferme le fichier d’entré

with open("exportPointSet.csv", ’w’) as my_file:

my_file.write(text)

my_file.close()#Ferme le fichier d’entré

#0n transforme les données pour avoir les profondeurs transformées pour les simulations MPS
#La transformation s’éffectue par rapport a 1’altitude réel du MNT et par rapport
#au numéro de couche transformée

HHHHH BB HEHY #: HHHHEHE
dataFinal = pd.read_csv("exportPointSet.csv")
altitude = dataFinal["Z"]
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profPasse dataFinal ["Profondeur"]
positionT dataFinal["PositionTransfo"]
profReel = altitude-profPasse
profTransfo = profReel-(2*positionT)

dataFinal.insert (5, "profondeuReel" ,profReel)
dataFinal.insert (6, "profondeurTransfo",profTransfo)

dataFinal.to_csv("C:\Users\wdall\Desktop\DonneeForage\Geoter_Diagraphiesl\exportPointSet.csv",index=False)

print "THE END"
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A.4 3D Trend Creation

# -*%- coding: utf-8 -*-
import sgems

#HitH#
#VALENTIN MAI 2018
HiH#

def getLayerTrend(indice):
import sgems

gridTrendName = "layer"+str(indice)+"trend_1"

propertyName = "gradient"

#sgems . execute ("ConvertToCategoricalProperty {}::{}".format(gridTrendName,propertyName))
layer=sgems.get_property(gridTrendName,propertyName)

#sgems.execute ("DeleteObjectProperties {}::{}".format(gridTrendName,propertyName+" - categorical"))

print ("getLayerTrend Done")
return layer;

def getListe3D(gridName, propertyName) :
import sgems

grid_geom = sgems.get_grid_info(gridName)

nx = int(grid_geom[’num_cells’][0]) #nombre de cellule en x
ny = int(grid_geom[’num_cells’][1]) #nombre de cellule en y
nz int(grid_geom[’num_cells’] [2]) #nombre de cellule en z
SGProperty=sgems.get_property(gridName,propertyName)
sizelLayer=nx*ny

listLayer=[]

for i in range (nz): #0On parcourt nz tour de boucle
compteur1=0+i*sizeLayer

compteur2=(i+1)*sizelLayer
listLayer.append (SGProperty [compteurl:compteur2])

listFinallayer=[]

for z in range(nz):

layer=[]

for j in range(ny):

for i in range(nx):

k=j*nx+i

if listLayer[z] [k]==0:
layer.append(sgems.nan())
else:
layer.append(listLayer[z] [k])
listFinalLayer.append(layer)

print ("getListe3D Done")
return listFinallayer;

def remplacelLayer(listelIndice,layerTrend,listelayer,gridName,listeAssignation):
#listeIndice comporte les position des couches a remplacer
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#layerTrend comporte la liste de couches trends

#listeLayer comporte la liste des couche du grid

#listeAssignation contient une liste de liste,

#la premiére liste contient les numéro des couches & modifier par le premier trend...

import sgems

grid_geom = sgems.get_grid_info(gridName)

nx = int(grid_geom[’num_cells’] [0]) #nombre de cellule en x
ny = int(grid_geom[’num_cells’][1]) #nombre de cellule en y
nz = int(grid_geom[’num_cells’][2]) #nombre de cellule en z

# for i in range(len(listeAssignation)):

# listelayer[listelIndice[i]]=layerTrend[i]
zModif=[]

for i in range(len(layerTrend)):

for j in range(len(listeAssignation[il)):
listeLayer[listeAssignation[i] [j]]=layerTrend[i]
zModif .append(listeAssignation[i] [j])

gridBack = []

for z in range(nz):

for j in range(ny):

for i in range(nx):

k=j*nx+i
gridBack.append(listeLayer[z] [k])

sgems.set_property(’SG3D’, ’Trend’,gridBack )

print ("remplacelLayer Done")
return;

print "THE END"
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A.5 DeeSse Parameters

/* SIMULATION GRID (SG) */

407 504 250 // size in each direction
100 100 2 // spacing in each direction
618986.25 1719964 .75 -220 // origin

/* SIMULATION VARIABLES */

2

facies 1 DEFAULT_FORMAT //Doit correspondre au nom de la variable dans le fichier
trend O

/* OUTPUT SETTINGS FOR SIMULATION */
OUTPUT_SIM_ONE_FILE_PER_REALIZATION
simuMPS100

/* OUTPUT REPORT */

/* Flag (0 / 1), and if 1, output report file. */
1

test_report.txt

/* TRAINING IMAGE */
1
tiSmall.gslib

/* DATA IMAGE FILE FOR SG */
1
trend.gslib

/* DATA POINT SET FILE FOR SG */
1
well.gslib

/* MASK IMAGE */
1
gridMask.gslib

/* HOMOTHETY */
*/
0

/* ROTATION */

2

1 orientation.gslib
0 0.0 0.0

0 0.0 0.0

/* CONSISTENCY OF CONDITIONING DATA (TOLERANCE RELATIVELY TO THE RANGE OF TRAINING VALUES) */
0.05

/* NORMALIZATION TYPE (FOR VARIABLES FOR WHICH DISTANCE TYPE IS NOT O AND DISTANCE IS ABSOLUTE) */
NORMALIZING_LINEAR

/* SEARCH NEIGHBORHOOD PARAMETERS */
/* SEARCH NEIGHBORHOOD PARAMETERS FOR VARIABLE #0 */
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20 20 0 // search radius in each direction
// anisotropy ratio in each direction
// angles (azimuth, dip, plunge in degrees) for rotation
// power for computing weight according to distance
/* SEARCH NEIGHBORHOOD PARAMETERS FOR VARIABLE #1 */
20 20 0.0 // search radius in each direction
// anisotropy ratio in each direction
// angles (azimuth, dip, plunge in degrees) for rotation
// power for computing weight according to distance

.0
1.0
0.0

1.0 1.0
0.0 0.0

O O
o O O

/* MAXIMAL NUMBER OF NEIGHBORING NODES FOR EACH VARIABLE (as many number(s) as number of variable(s)) */
24
10

/* MAXIMAL DENSITY OF NEIGHBORING NODES IN SEARCH NEIGHBORHOOD FOR EACH VARIABLE (as many number(s)
as number of variable(s)) */

1.0

1.0

/* RELATIVE DISTANCE FLAG FOR EACH VARIABLE (as many flag(s) (0 / 1) as number of variable(s)) */

0
0

/* DISTANCE TYPE FOR EACH VARIABLE (as many number(s) as number of variable(s)) */
/* Available distance (between data events):
- 0: non-matching nodes (typically for categorical variable)
L-1 distance
L-2 distance
L-p distance, requires the real positive parameter p
L-infinity distance */

[
> W N -

/* WEIGHT FACTOR FOR CONDITIONING DATA, FOR EACH VARIABLE (as many number(s) as number of variable(s)) */
5
0.5

/* SIMULATION AND PATH PARAMETERS */
PATH_RANDOM

/* DISTANCE THRESHOLD FOR EACH VARIABLE (as many number(s) as number of variable(s)) */
0.05
0.25

/% PROBABILITY CONSTRAINTS */

/* PROBABILITY CONSTRAINTS FOR VARIABLE #0 */
0

0

/* BLOCK DATA */

/* BLOCK DATA FOR VARIABLE #0 */
0

0

/* MAXIMAL SCAN FRACTION FOR EACH TI (as many number(s) as number of training image(s)) */
0.50

/* TOLERANCE */
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/* Tolerance t on the threshold value for flagging nodes */
0.0

/* POST-PROCESSING */
1
POST_PROCESSING_PARAMETERS_DEFAULT

/* PYRAMIDS */
0

/* SEED NUMBER AND SEED INCREMENT */
1993
1

/* NUMBER OF REALIZATIONS */
100

END
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A.6 Shannon Entropy Calculation

# -*%- coding: utf-8 -*-
import sgems
import math

#Valentin Juillet 2018

grid_name = "simul00_1"
grid_geom = sgems.get_grid_info(grid_name)

allProba = []
for i in range(6):

propertyValu = sgems.get_property(grid_name,"PostSim100 Category "+str(i))
allProba.append (propertyValu)

nx = int(grid_geom[’num_cells’][0]) #Nombre de cellule en x
ny = int(grid_geom[’num_cells’][1]) #Nombre de cellule en y
nz = int(grid_geom[’num_cells’][2]) #Nombre de cellule en z

listeProba=[]
proba=[]

for i in range(nx*ny*nz):
if str(propertyValu[il)!= "nan":

for j in range(6):
if allProbaljl[i] != 0 :

proba.append (round(allProbalj] [i],3))

listeProba.append (proba)
proba=[]

else:
listeProba.append(sgems.nan())

shannonList = []
probaLogList = []

for i in range(nx*ny*nz):

if str(listeProbal[i])!="nan":
#Calcul Shannon

for j in range(len(listeProbalil)):

if listeProbali] [j] > 0.0001 :
probalogList.append(listeProbali] [j]*(math.log(1/listeProbali] [j]1,5)))

entropie = sum(probaLogList)
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shannonList.append(entropie)
probalogList = []

else:
shannonList.append(sgems.nan())

print len(shannonList)
sgems.set_property(grid_name, "Shannon Entropy",shannonList)

print "THE END"
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A.7 VPCs Tests

a) Simulation with affinity and rotation but without b) Simulation with affinity and rotation and with c) Simulation with tolerance on the trend map and
hard data. hard data. with hard data.

VPC Simulation
(5 Facies)

Relative Depth from the

£
£

-
=
=
=
-

Alluvial fan Alluvial fan

2

VPC Simulation
(6 Facies)

Relative Depth from the PC's bottom

H

[ Crevasse splay
- Aluvial fan

Figure 22 — Vertical proportion curves calculated from different simulations. The VPCs
allow to visualize the differences between the simulations and validate the vertical propor-
tion trend of a model.
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A.8 Transmissivity Inversion/Optimization

# -*- coding: utf-8 -*-

import numpy as np

import math

import pandas as pd

import matplotlib.pyplot as mp

#Valentin Juillet 2018

Hi#H#

#0n importe les données de facies tiré des simulations

#Le fichier csv se compose d’une liste de tout les facies présent dans la simulation,
#pour 1l’ensemble des points ou les données de transmissivité sont connues

#it#

directoryl = "C:\\Users\\wdall\\Desktop\\Python\\Code_OK\\SGEMs\\transmissivityMap\\KfromSimu.csv"
datakK pd.read_csv(directoryl)
KforT =10

for i in range(188):
KforT.append(list((dataK["T"+str(i)1)))

#0n crée les variables que 1’on va compter ainsi que la liste vide stockant ces variables
compteNonNulle = 0

compteZero =
comptelUn =
compteDeux =
compteTrois =
compteQuatre =
compteCing =
compteNonNulle
indiceAll =

,m O O OO O0OOoOOo

for j in range(len(KforT)):
indiceK = []
compteNonNulle
compteZero
compteUn
compteDeux
compteTrois
compteQuatre
compteCing

|
[elelelNelNeNeNel

for i in range(len(KforT[jl)):

if KforT[j][il] ==
compteZero +=1
compteNonNulle += 1

elif KforT[j][i] == 1:

compteUn +=1
compteNonNulle += 1

59



Multiple-point Statistics MSc Project 2017-2018 CHYN

elif KforT[jl[i] == 2:
compteDeux += 1
compteNonNulle += 1

elif KforT[jl[i] == 3:
compteTrois +=1
compteNonNulle +=

e

elif KforT[jl[i] == 4:
compteQuatre += 1
compteNonNulle +=

e

elif KforT[j][i] == b:
compteCing +=1
compteNonNulle += 1

indiceK.append(compteZero)
indiceK.append (compteUn)
indiceK.append (compteDeux)
indiceK.append(compteTrois)
indiceK.append (compteQuatre)
indiceK.append(compteCing)
indiceK.append(compteNonNulle)

indiceAll.append(indiceK)
HH#H#

#0n récupére les valeurs de Transmissivité mesurées/réelles
#ATTENTION il faut diviser les valeurs de Transmissivité par 1000

HH#H#

directory2 = "C:\\Users\\wdall\\Desktop\\Python\\Code_OK\\SGEMs\\transmissivityMap\\Tvalue.csv"
dataT = pd.read_csv(directory2)

Td = dataT["T"]

Transmissivity = []

HH#H#

#0n créé une liste de Transmissivité
#0n transforme les valeurs de transmissivité en une matrice (188,1)
H#i#

for i in range(len(dataT)):
Transmissivity.append(Td[i]/(1000))

Tmatrix=np.zeros((len(Transmissivity),1))

for i in range(len(Transmissivity)):
Tmatrix[i,0] = Transmissivity[i]

#i##
#0n crée une matrice correspondant a 1’épaisseur de chaque facies pour chaque point de transmissiviteé
#it#

IndiceMatrix = np.zeros((len(indiceAll),6))

for i in range(len(indiceAll)):
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for j in range(6):
IndiceMatrix[i,j] = indiceAll[i] [j]

IndiceMatrix = IndiceMatrix*2 #

#it#
#Calcul matriciel 1
#it#

= IndiceMatrix.transpose()
np.dot (A,IndiceMatrix)
np.linalg.inv(B)
np.dot(C,A)

OaQwi=
]

Kmatrix=np.dot (D, Tmatrix)

#it#
#Vérification calcul matriciel 1
#it#

T_theo_1 = np.dot(IndiceMatrix,Kmatrix)
mp.loglog(T_theo_1,Tmatrix,"+", label= "Matrix Calculation Method")
mp . show ()

###

#Calcul matriciel 2

#0n cherche cette fois & calculer les valeurs de K par optimisation

#0n va ainsi pouvoir définir des bornes aux valeurs de K (K doit &tre positif)
#0n va également chercher & minimiser 1’erreur Ki carrée entre les valeurs de
#Transmissivité mesurées et calculées

#Ki carré = [SOMME (loglO(T_mesurées)-loglO(T_calculées))]**2

#i#t#

from scipy.optimize import minimize

#1 On definie la fonction dont les paramétres sont & optimiser en vue de la minimisation
#0n veut minimiser le Ki log en ajustant les paramétres K

def fToMinimize(Kin):

K = np.zeros((6, 1))
for j in range(6):
K[j, 0] = Kin[j]

#Le K input doit &tre de forme matricielle (6,1)
T_theo_2 np.dot (IndiceMatrix,K)
goodList (T_theo_2!=0) & (Tmatrix!=0)
Tcal_trie T_theo_2[goodList]

Tmesu_trie = Tmatrix[goodList]

Tcal_log np.logl0(Tcal_trie)

Tmesu_log np.logl0(Tmesu_trie)

Ki_carre = np.dot((Tmesu_log-Tcal_log), (Tmesu_log-Tcal_log))

return Ki_carre;
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#2 On definie 1l’objective fonction

def objective(K):
return fToMinimize (K);

#3 On définie les boundaries des variables
bnds0 = ((0,None), (0,None), (0,None), (0,None), (0,None), (0,None))

#4 On définie les valeurs KO
KO = [0.005,0.2,0.25,0.01,0.05,0.01] # fonction = 43 ; 310

#5 On définie le probléme & optimiser par 1l’algorithme
sol = minimize(fToMinimize,KO,method="SLSQP",bounds=bnds0,options={"disp":Truel})

KOptimal = sol.x

#6 On re-calcul la valeur de T pour les plotées par rapport & notre permiére estimation des variables K
KoptM = np.reshape(KOptimal, (6,1))
TCalcOpti=np.dot (IndiceMatrix,KoptM)

mp.loglog(TCalcOpti,Tmatrix,"r.",label = "Optimization Method")
mp.loglog([le-5,1e-2], [1le-5,1e-2],"k")

mp.xlabel("T Calculed")

mp.ylabel("T Mesured")

mp.legend ()

mp . show ()

print "THE END"
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A.9 New Simulations test
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WMo

Ue) Zeisf
Ug Zepsi

Worin

UPREGET:

BORCEON

FACIES

Alluvial Fan

Braided River

Meander River

Crevasse Splay

Levee

Flood Plain

a) Without lateral repetition of the Tl

b) Without Hard Data

Figure 23 — Bottom layer of the two 3D simulation tests realized in order to understand
the meander beds spatial variation. (a) The first set of simulations was realized without
a lateral repetition in the TI. The propability maps of this set (Annexe 10) were more
heterogeneous than the set presented in the result section (4.1) . However, the floodplain
proportion was underestimated and the lateral connectivity of the beds was too important.
(b) The second set was realized with the first TT (Figure 11), which displayed lateral rep-
etitions but without hard data . The simulation appeared to be more realistic than the one
without repetitions in the TI (a). However, its probability maps showed the same homoge-
neous distribution than the one with hard data and lateral repetition (4.2).

A.10 Probability Maps for the new sets of Simulations
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A.11 Training Image Workflow

Code Python| Image d'entrainement|

GIM

Image d'entrainement (png)|

|

Image - Mode - Couleurs Indexées )

Image en couleurs indexées

Image - Taille et Echelle de I'image )

j

‘Image en couleurs dimensionnée‘

Export en format pgm ASCII )

.Taille de I'image en pixel et borne des !endances.

1|
i

Création carte des tendances (linéaire- rectangle)|

‘Image d'entrainement Facies continues‘

1]
I

Cartes des tendances de l'image d'entrainement‘ ‘Image d'entrainement Facies catégoriques|

Simulation MPS

Figure 26 — Chart of the main steps for the creation of a TI.
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A.12 Trend maps Workflow

[Code Python Tendances Modéle|

Limite Modéle ArcMap|

Exporter le polygone sous format shp )

Limite Modeéle Feflow|

i

Créer une grill & partir des limites importées| )

Modele Feflow Modale Feflow] [Modele Feflow]

igner des charges aux zones sources et aux limites out

Mean age| Mean age|

Mean age|

Exporter les fringes des ages d'écoulement au format shp

[Carte des fringes des ages|  [Carte des fringes des ages| ~ [Carte des fringes des ages|

| Transformation des fringes 0-1 et addition des zones|
Carte des tendances de sédimentation|

T les cartes en raster )
Cartes tendances raster|
T le fichier raster en gslib )

Carte des tendances modgle|

Simulation MPS;|

3

Figure 27 — Chart of the main steps for the creation of a complex trend map.
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A.13 Rotation map Workflow

Limite Modéle ArcMap

Tracer les lignes d'orientations et leur assigner des valeurs azymutal

Line d'orientation Arcmap

Convertir les lignes vers des points (outils: Points along lines)

Points d'orientation Arcmap

4( Convertir les points en format point set gslib )

Interpolation des orientations

4( Nearest Neighbour ou kriging )

lCane orientations Interpolées]

Simulation MPS

Figure 28 — Chart of the main steps for the creation of a continuous rotation map.

68



Multiple-point Statistics MSc Project 2017-2018 CHYN

References

AR2GEMS (2010). Ar2tech products ar2gems : A modern geostatistical platform.
http://www.ar2tech.com.

ArcMap (2016). Esri geographic information system company, arcmap 10.5.
https://www.esri.com.

Caballero, Y. and Ladouche, B. (2015). Impact of climate change on groundwater in a

confined Mediterranean aquifer. Hydrology and Earth System Sciences Discussions,
12(10):10109-10156.

Cazenave, A. (2013). Hausse du niveau de la mer et impact du changement climatique
global. La lettre du College de France.

Chauveau, M., Chazot, S., Perrin, C., Bourgin, P.-Y., Sauquet, E., Vidal, J.-P., Rouchy, N.,
Martin, E., David, J., Norotte, T., Maugis, P., and De Lacaze, X. (2013). Quels impacts

des changements climatiques sur les eaux de surface en France a I’horizon 2070 ? La
Houille Blanche, (4):5-15.

CLE (2011). Sage des nappes plio-quaternaire de la plaine du roussillon. Technical report,
Commission Locale de 1’Eau.

Comunian, A., Renard, P., Straubhaar, J., and Bayer, P. (2011). Three-dimensional high
resolution fluvio-glacial aquifer analog - Part 2: Geostatistical modeling. Journal of
Hydrology, 405(1-2):10-23.

de Carvalho, P. R. M., da Costa, J. F. C. L., Rasera, L. G., and Varella, L. E. S. (2017). Geo-
statistical facies simulation with geometric patterns of a petroleum reservoir. Stochastic
Environmental Research and Risk Assessment, 31(7):1805-1822.

Dorfliger, N. and Perrin, J. (2012). Ressource en eau : une gestion nécessairement locale
dans une approche globale.

Dutartre, P., Desprats, J., and Rouzeau, . (1995). Prospection hydrogeologique des milieux
fissurés du socle, Massif des Alberes - France. Technical report, BRGM.

Duvail, C. (2007). Expression des facteurs régionaux et locaux dans I’enregistrement
sédimentaire d’une marge passive - Exemple de la marge du Golfe du Lion étudiée
selon un continuum terre-mer. Universite Montpellier 2, Sciences et Techniques du
Languedoc.

69



Multiple-point Statistics MSc Project 2017-2018 CHYN

FEFLOW (2016). Mike powered by dhi, feflow 7.0. https://www.mikepoweredbydhi.com.

Hu, L. Y. and Chugunova, T. (2008). Multiple-point geostatistics for modeling subsurface
heterogeneity: A comprehensive review. Water Resources Research, 44(11):1-14.

Lofi, J., Gorini, C., Berné, S., Clauzon, G., Reis, A. T. D., Ryan, W. B., and Steckler,
M. S. (2005). Erosional processes and paleo-environmental changes in the western gulf

of lions (sw france) during the messinian salinity crisis. Marine Geology, 217(1):1 —
30.

Mariethoz, G., Renard, P., and Straubhaar, J. (2010). The direct sampling method to
perform multiple-point geostatistical simulations. Water Resources Research, 46(11):1—
14.

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8):1246-1266.

Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M., and Renard,
P. (2013). A practical guide to performing multiple-point statistical simulations with the
Direct Sampling algorithm. Computers and Geosciences, 52:307-324.

Nichols, G. (2009). Sedimentology & Stratigraphy. A John wiley and Sons, LTD, Publi-
cation.

Petrel (2017). Schlumberger, petrel e&p software platform. https://www.software.slb.com.

Ravenne C, Galli A, D. B. B. H. (2002). Quantification of Facies Relationships Via Pro-
portion Curves. Geostatistics Rio 2000, Quantitati(12).

Renard, P., Alcolea, A., and Ginsbourger, D. (2013). Stochastic versus Deterministic
Approaches. pages 133-149.

Serra, O., Sulpice, L., et al. (1975). Sedimentological analysis of shale-sand series from
well logs.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical
Journal, 5(3):3.

Straubhaar, J. (2017). User ’s Guide May 2017 DeeSse Software patented by the Univer-
sity of Neuchatel. (May).

Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., and Besson, O. (2011). An
improved parallel multiple-point algorithm using a list approach. Mathematical Geo-
sciences, 43(3):305-328.

70



Multiple-point Statistics MSc Project 2017-2018 CHYN

Strebelle, S. (2002). Conditional simulation of complex geological structures using
multiple-point statistics. Mathematical Geology, 34(1):1-21.

Strebelle, S., Payrazyan, K., and Caers, J. (2002). Modeling of a Deepwater Turbidite
Reservoir Conditional to Seismic Data Using Multiple-Point Geostatistics. SPE Annual
Technical Conference and Exhibition.

Zhang, T., Switzer, P., and Journel, A. (2006). Filter-based classification of training image
patterns for spatial simulation. Mathematical Geology, 38(1):63-80.

71



	Introduction
	State of the art
	Description of the Roussillon Plain
	Geology of the Plain
	Hydrogeology of the Plain

	Geostatistics and Multiple-point Statistics
	Multiple-point Statistics Definition
	Non-stationarity Simulation
	The Direct Sampling algorithm : DeeSse


	Materials and Methods
	Simulation Grid
	2D Grid
	3D Grids

	Hard data
	Training Images
	Trend Maps
	Rotation Maps
	Simulation Parameters
	Probability Maps and Shannon Entropy
	Transmissivity Estimation

	Results and Discussions
	3D Mutiple-Variables Simulation
	Probability maps and Shannon Entropy
	Vertical Proportion Curves
	Transmissivity Estimation

	Conclusion
	Appendix
	SG 3D Creation
	SG 3D Transformed Creation
	Well Data Extraction
	3D Trend Creation
	DeeSse Parameters
	Shannon Entropy Calculation
	VPCs Tests
	Transmissivity Inversion/Optimization
	New Simulations test
	Probability Maps for the new sets of Simulations
	Training Image Workflow
	Trend maps Workflow
	Rotation map Workflow



